Philadelphia University Faculty of Science Basic Sciences



General Chemistry 2 0212103 Final Exam 2022-2023 120 min. / Summer Semester

Date: 9 / 9 /2023

| Name :       |       | <br> |  |
|--------------|-------|------|--|
| Student No.: | ••••• | <br> |  |

Instructor Name: Khadeeja Al Abrouni

| 1<br>H<br>Hydrogen<br>1.01           |                                       |                                        |                                            |                                       |                                         |                                      |                                        |                                      |                                       |                                              |                                       |                                       |                                             |                                       |                                        |                                      | 2<br><b>He</b><br>Helium<br>4.00    |
|--------------------------------------|---------------------------------------|----------------------------------------|--------------------------------------------|---------------------------------------|-----------------------------------------|--------------------------------------|----------------------------------------|--------------------------------------|---------------------------------------|----------------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------------|---------------------------------------|----------------------------------------|--------------------------------------|-------------------------------------|
| 3<br>Li<br>Lithium<br>6.94           | 4<br>Be<br>Beryllium<br>9.01          |                                        |                                            |                                       |                                         |                                      |                                        |                                      |                                       |                                              |                                       | 5<br><b>B</b><br>Boron<br>10.81       | 6<br>C<br>Carbon<br>12.01                   | 7<br><b>N</b><br>Nitrogen<br>14.01    | 8<br><b>O</b><br>Oxygen<br>16.00       | 9<br><b>F</b><br>Fluorine<br>19.00   | 10<br><b>Ne</b><br>Neon<br>20.18    |
| 11<br><b>Na</b><br>Sodium<br>22.99   | 12<br>Mg<br>Magnesium<br>24.31        |                                        |                                            |                                       |                                         |                                      |                                        |                                      |                                       |                                              |                                       | 13<br><b>Al</b><br>Aluminum<br>26.98  | 14<br>Si<br>Silicon<br>28.09                | 15<br>P<br>Phosphorus<br>30.97        | 16<br><b>S</b><br>Sulfur<br>32.07      | 17<br><b>Cl</b><br>Chlorine<br>35.45 | 18<br><b>Ar</b><br>Argon<br>39.95   |
| 19<br><b>K</b><br>Potassium<br>39.10 | 20<br><b>Ca</b><br>Calcium<br>40.08   | 21<br><b>Sc</b><br>Scandium<br>44.96   | 22<br><b>Ti</b><br>Titanium<br>47.87       | 23<br>V<br>Vanadium<br>50.94          | 24<br><b>Cr</b><br>Chromium<br>52.00    | 25<br>Mn<br>Manganese<br>54.94       | 26<br><b>Fe</b><br>Iron<br>55.85       | 27<br><b>Co</b><br>Cobalt<br>58.93   | 28<br><b>Ni</b><br>Nickel<br>58.69    | 29<br>Cu<br>Copper<br>63.55                  | 30<br><b>Zn</b><br>Zinc<br>65.39      | 31<br><b>Ga</b><br>Gallium<br>69.72   | 32<br><b>Ge</b><br>Germanium<br>72.61       | 33<br><b>As</b><br>Arsenic<br>74.92   | 34<br>Se<br>Selenium<br>78.96          | 35<br><b>Br</b><br>Bromine<br>79.90  | 36<br><b>Kr</b><br>Krypton<br>83.80 |
| 37<br><b>Rb</b><br>Rubidium<br>85.47 | 38<br><b>Sr</b><br>Strontium<br>87.62 | 39<br><b>Y</b><br>Yttrium<br>88.91     | 40<br><b>Zr</b><br>Zirconium<br>91.22      | 41<br><b>Nb</b><br>Niobium<br>92.91   | 42<br>Mo<br>Molybdenum<br>95.94         | 43<br>Tc<br>Technetium<br>(98)       | 44<br><b>Ru</b><br>Ruthenium<br>101.07 | 45<br><b>Rh</b><br>Rhodium<br>102.91 | 46<br>Pd<br>Palladium<br>106.42       | 47<br><b>Ag</b><br>Silver<br>107.87          | 48<br><b>Cd</b><br>Cadmium<br>112.41  | 49<br>In<br>Indium<br>114.82          | 50<br><b>Sn</b><br><sup>Tin</sup><br>118.71 | 51<br><b>Sb</b><br>Antimony<br>121.76 | 52<br><b>Te</b><br>Tellurium<br>127.60 | 53<br>I<br>Iodine<br>126.90          | 54<br><b>Xe</b><br>Xenon<br>131.29  |
| 55<br><b>Cs</b><br>Cesium<br>132.91  | 56<br><b>Ba</b><br>Barium<br>137.33   | 57<br><b>La</b><br>Lanthanum<br>138.91 | 72<br><b>Hf</b><br>Hafnium<br>178.49       | 73<br><b>Ta</b><br>Tantalum<br>180.95 | 74<br>W<br>Tungsten<br>183.84           | 75<br><b>Re</b><br>Rhenium<br>186.21 | 76<br><b>Os</b><br>Osmium<br>190.23    | 77<br><b>Ir</b><br>Iridium<br>192.22 | 78<br><b>Pt</b><br>Platinum<br>195.08 | 79<br><b>Au</b><br><sup>Gold</sup><br>196.97 | 80<br><b>Hg</b><br>Mercury<br>200.59  | 81<br><b>TI</b><br>Thallium<br>204.38 | 82<br><b>Pb</b><br>Lead<br>207.2            | 83<br><b>Bi</b><br>Bismuth<br>208.98  | 84<br><b>Po</b><br>Polonium<br>(209)   | 85<br>At<br>Astatine<br>(210)        | 86<br><b>Rn</b><br>Radon<br>(222)   |
| 87<br><b>Fr</b><br>Francium<br>(223) | 88<br><b>Ra</b><br>Radium<br>(226)    | 89<br><b>Ac</b><br>Actinium<br>(227)   | 104<br><b>Rf</b><br>Rutherfordium<br>(261) | 105<br><b>Db</b><br>Dubnium<br>(262)  | 106<br><b>Sg</b><br>Seaborgium<br>(266) | 107<br><b>Bh</b><br>Bohrium<br>(264) | 108<br><b>Hs</b><br>Hassium<br>(269)   | 109<br>Mt<br>Meitnerium<br>(268)     |                                       |                                              |                                       |                                       |                                             |                                       |                                        |                                      |                                     |
|                                      |                                       |                                        |                                            | 59                                    | 59                                      | 60                                   | 61                                     | 62                                   | 63                                    | 64                                           | 65                                    | 66                                    | 67                                          | 69                                    | 69                                     | 70                                   | 71                                  |
|                                      |                                       |                                        |                                            | Cerium<br>140.12                      | Praseodymium<br>140.91                  | Neodymium<br>144.24                  | Promethium<br>(145)                    | Samarium<br>150.36                   | Europium<br>151.96                    | Gadolinium<br>157.25                         | Tb<br>Terbium<br>158.93               | Dy<br>Dysprosium<br>162.50            | Ho<br>Holmium<br>164.93                     | Erbium<br>167.26                      | Tm<br>Thulium<br>168.93                | Yb<br>Ytterbium<br>173.04            | Lu<br>Lutetium<br>174.97            |
|                                      |                                       |                                        |                                            | 90<br><b>Th</b><br>Thorium<br>232.04  | 91<br>Pa<br>Protactinium<br>231.04      | 92<br><b>U</b><br>Uranium<br>238.03  | 93<br>Np<br>Neptunium<br>(237)         | 94<br>Pu<br>Plutonium<br>(244)       | 95<br>Am<br>Americium<br>(243)        | 96<br><b>Cm</b><br>Curium<br>(247)           | 97<br><b>Bk</b><br>Berkelium<br>(247) | 98<br>Cf<br>Californium<br>(251)      | 99<br>Es<br>Einsteinium<br>(252)            | 100<br><b>Fm</b><br>Fermium<br>(257)  | 101<br>Md<br>Mendelevium<br>(258)      | 102<br>No<br>Nobelium<br>(259)       | 103<br>Lr<br>Lawrencium<br>(262)    |
|                                      |                                       |                                        |                                            |                                       |                                         |                                      |                                        |                                      |                                       |                                              |                                       |                                       |                                             |                                       |                                        |                                      |                                     |

## Question 1: Circle the correct answer:

1- Consider the following gas-liquid equilibrium for an aqueous system at a constant partial pressure of  $N_2$ .

 $N_2(g) \rightleftharpoons N_2(aq)$ 

What is the effect on the equilibrium composition of the liquid when the temperature is increased?

- a. The amount of N<sub>2</sub> dissolved in the liquid increases.
- b. The amount of  $N_2$  dissolved in the liquid decreases.
- c. The amount of  $N_2$  dissolved in the liquid does not change.
- d. Not enough information is provided to answer the question.

2-At a particular temperature, the solubility of  $O_2$  in water is 0.590 g/L at an oxygen pressure of around 15.2 atm. What is Henry's law constant for  $O_2$  (in units of L  $\cdot$  atm/mol)?

- a. 3.88 × 10<sup>-2</sup>
- b.  $8.26 \times 10^2$
- c. 2.80× 10<sup>-1</sup>
- d. 1.21× 10<sup>-3</sup>

3- Which compound has the lowest standard enthalpy of vaporization at 25°C?

- a.  $C_6H_{14}$
- $b. C_8 H_{16}$
- c.  $C_5H_{12}$
- $d.\ C_8H_{18}$

4-If two fluids do not mix but, rather, form two layers, they are said to be \_\_\_\_\_.

- a. immiscible
- b. miscible
- c. homogeneous
- d. identical

5-The molarity of a solution is defined as the

- a. moles of solute per liter of solvent.
- b. grams of solute per kilogram of solvent.
- c. grams of solute per liter of solution.
- d. moles of solute per liter of solution.

6- Given the value of Ka for the following acids

 $\begin{array}{ll} \text{HF} & 7.2 \times 10^{-4} \\ \text{HOC} & 3.5 \times 10^{-8} \\ \text{HCN} & 4.0 \times 10^{-10} \end{array}$ 

Which of these has the strongest conjugate base?

a. Fb. OCc. CNd.non

7- A solution of acetic acid  $CH_3COOH$  was prepared. What would happen to the pH of this solution if sodium acetate  $CH_3COONa$  were added to the solution?

 $CH_3COOH \leftarrow \rightarrow CH3COO^- + H^+$ 

a. pH would go up

b. pH would go down

- c. would not affect the pH
- d. Does this solution have pH?

8- The gas phase reaction  $A + B \longrightarrow C$  has a reaction rate which is experimentally observed to follow the relationship Rate =  $k[A]^2$ Which of the following statements is correct?

- a. The reaction is second order of A and zero order of B
- b. The reaction is an overall third-order
- c. The reaction is first order of A and first order of B
- d. The reaction rate dependent on the concentration of A and B

9- A chemical reaction that absorbs heat from the surroundings is said to be

\_\_\_\_ and has a \_\_\_\_\_\_ ΔH at constant pressure.

a. endothermic, positive

b. endothermic, negative

c. exothermic, negative

d. exothermic, positive

10- Which one of the following reactions has a **POSITIVE** entropy change  $\Delta S$ ?

11-The energy needed for a reaction to convert reactants to products is called

a. collision energy.

b. potential energy.

c. kinetic energy.

d. activation energy.

12- What is the  $K_b$  of the  $NO_2^-$  species ( ka of HNO2=  $4.5 \times 10^{-4}$ ) a.  $2.2 \times 10^{-11}$ b. $1 \times 10^{-14}$ c.  $4.5 \times 10^{-4}$ d. $1 \times 10^{-7}$ 

13- Given the following reaction at equilibrium, which of the following will increase the amount (in moles) of  $SO_2CI_2$ :

 $SO_2(g) + Cl_2(g)$   $SO_2Cl_2(g)$   $\Delta H^\circ = -67 \text{ kJ}$ 

- a. adding heat to the system
- b. adding  $Cl_2$  to the system.
- c. removing Cl<sub>2</sub> from the system.
- d. increasing the volume of the reaction vessel.

14- Which of the following is not a colligative property?

a- freezing point depression
b-boiling point elevation
c-solubility
d-vapor pressure lowering

15-A catalyst:

- a. always participates in the reaction.
- b. always decrease the activation energy for a reaction.
- c. always decreases the rate of a reaction.
- d. always increases the activation energy for a reaction.

16- For the reaction, A + B  $\longrightarrow$  C,  $\Delta H^{\circ} = +30 \text{ kJ}$ ;  $\Delta S^{\circ} = +50 \text{ J/K}$ . Therefore, the reaction is:

- a. spontaneous at all temperatures.
- b. nonspontaneous at all temperatures.
- c. spontaneous at temperatures less than 600 K.
- d. spontaneous at temperatures greater than 600 K.

## Question 2: Use the data in the table to calculate $\Delta$ H<sub>f</sub> for reaction at 298 K:

 $AI_2O_3(s) + 6 HCl(aq) \longrightarrow 2 AICI_3(s) + 3 H_2O(l)$ 

| SPECIES                            | ΔH° <sub>f</sub> at 298 K (kJ/mol) |
|------------------------------------|------------------------------------|
| Al <sub>2</sub> O <sub>3</sub> (s) | -1675.7                            |
| HCl(aq)                            | -167.16                            |
| AICI <sub>3</sub> (s)              | -704.2                             |
| H <sub>2</sub> O(I)                | -285.8                             |

Question 3: Calculate the boiling point elevation of a solution containing 478 g of ethylene glycol in 3202 g of water. Molar mass = 62.07g/mol, K<sub>b</sub> =  $0.52 C^0/m$ , T<sup>0</sup> = 100 C<sup>0</sup>

Question 4: The PH of a sample of human blood was measured to be 7.41 at 25°C. Calculate POH, [H+], and [OH-] for the sample.

Question 5: The standard molar enthalpy of combustion for ethanol, C<sub>2</sub>H<sub>5</sub>OH, is -1409 kJ. C<sub>2</sub>H<sub>5</sub>OH (g) + 3 O<sub>2</sub> (g) → 2 CO<sub>2</sub> (g) + 3 H<sub>2</sub>O (aq)

What is the standard enthalpy change for the following process?

4 CO<sub>2</sub> (g) + 6 H<sub>2</sub>O (aq ) → 2 C<sub>2</sub>H<sub>5</sub>OH (g) + 6 O<sub>2</sub> (g)

Question 6: Given:  $N_2(g) + H_2(g) \rightleftharpoons NH_3(g)$ 

At equilibrium at a specific temperature, the concentration of  $NH_3(g)$  is 0.980 M, 1.53 M  $H_2(g)$  and 0.510 M  $N_2(g)$ . Calculate the value of  $K_c$  for this reaction.

Question 7: Calculate the temperature for the following equilibrium reaction. (Given:  $\Delta H = -176 \text{ kJ}$  and  $\Delta S = -284.5 \text{ J/K}$ ) NH<sub>3</sub>(g) + HCl(g)  $\longrightarrow$  NH<sub>4</sub>Cl(s)

Question 8: The following reaction was studied at  $25^{\circ}$ C. The pressure at equilibrium was found to be P<sub>NOCI</sub>=1.2 atm, P<sub>NO</sub>=  $5.0 \times 10^{-2}$ , P<sub>CI2</sub>= $3.0 \times 10^{-1}$ 

Calculate the value of Kc for the reaction at 25°C

2NO (g) + Cl<sub>2(g)</sub> \_ 2NOCl<sub>(g)</sub>

## Extra paper:

Good Luck